
2025/06/12 15:29 UTC 1/5 Demo Script: DevCon 2024

Grandjean & Braverman, Inc - https://grandjean.net/wiki/

Demo Script: DevCon 2024

I have 25 minutes for the demo portion:
0:01: Download and open twinBASIC
0:02: Customize add-in name and description
0:04: Create the tool window controls
0:05: Edit the Code in myToolWindow
0:07: Test in Access
0:10: Explain Strongly-typed collections and copy BuildStronglyTypedCollection()
function
0:15: Bring in other dependencies
0:16: Test in Access
0:18: Test in Barebones Access
0:22: Convert fafalone's WinDevLib package
0:24: Build 64-bit version
0:25: Explain regsvr32 registration; mention InnoSetup

Download and Save Sample Code

Download twinBASIC BETA 5041.
Extract from Zip folder2.
Open twinBASIC > Sample 43.
Enter Project Name: Demo2024 (Do not put spaces in the name)4.
Save as: %tmp%\Demo2024\Demo2024.twinproj5.

Navigate to: %tmp%1.
Create folder named: Demo20242.
Filename: Demo2024.twinproj3.

Customize the Addin Name and Description

Next, let's customize the friendly name and description of our addin. This is the info that appears in the
VBA Add-in Manager dialog box.

Go to dllRegistration.twin > DllRegisterServer1.
In the "FriendlyName" line, replace AddinProjectName with "DevCon 2024 Demo"2.
In the "Description" line, replace AddinProjectName with "Create a strongly-typed3.
collection class from an existing VBA class object."
Save the project4.
Build the project5.
Launch M:\Repos\NLS\DevCon2024\DevCon2024.accdb6.
Switch to VBA: Ctrl + G7.
Dock the add-in window8.
Go to "Add-Ins" > "Toggle myToolWindow Visibility"9.

https://github.com/twinbasic/twinbasic/releases/tag/beta-x-0504

Last update: 2024/04/15 19:11 UTC 12114:demo https://grandjean.net/wiki/12114/demo

https://grandjean.net/wiki/ Printed on 2025/06/12 15:29 UTC

Go to "Add-Ins" > "Add-in Manager"10.
Point out the "DevCon 2024 Demo" item with description below

Close "Add-In Manager" window11.

Create the Tool Window Controls

Next, we're going to customize the controls that appear on the tool window. I'll explain what these
controls will be used for in a minute. For now, all you need to know is that we are adding two text boxes,
a command button, and a label to hold a version number.

Open myToolWindow.tbcontrol1.
Select all controls and delete them2.
Click DIAGNOSTICS error to go to myToolWindow.twin and delete all dead code3.
Select form and set the following properties:4.

Height: 1700
Width: 2550

Create a text box and set the following properties:5.
Name: tbObjName
Anchors > Right: ☑ True
Height: 300
Left: 150
Text: {blank}
TextHint: Object Class Name
Top: 150
Width: 2250

Create a text box and set the following properties:6.
Name: tbCollName
Anchors > Right: ☑ True
Height: 300
Left: 150
Text: {blank}
TextHint: Collection Class Name
Top: 600
Width: 2250

Create a button and set the following properties:7.
Name: btnCreateClass
Anchors > Right: ☑ True
Caption: Create Collection Class
Height: 450
Left: 150
Top: 1050
Width: 2250

Create a version label8.
Caption: Version {hhmm}

2025/06/12 15:29 UTC 3/5 Demo Script: DevCon 2024

Grandjean & Braverman, Inc - https://grandjean.net/wiki/

Edit the Code in myToolWindow.twin

Delete the Timer1_Timer() and HelloWorld_Click() subroutines1.
Add a Click event handler for btnCreateClass using the code below2.

 Private Sub btnCreateClass_Click()
 MsgBox "Object class name: " & Me.tbObjName.Text & vbNewLine & _
 "Collection class name: " & Me.tbCollName.Text, vbInformation,
"Create Class"
 End Sub

Test the Updated Addin

Make sure Access is closed then Build the tB project1.
Reopen Access and switch to VBA2.
Enter sample text oVehicle for object class name and collVehicles for collection class name3.
then click [Create Collection Class]

Strongly-Typed Collection Class

Now, let's talk about what this add-in will actually, you know, do.

The purpose of the add-in is to encapsulate the BuildStronglyTypedCollection() function as
described here: Strongly-Typed Collections: The Easy Way

I put a link to this article in the Resources page for today's presentation. If you've never heard of
strongly-typed collection classes, I recommend you read up on them later.

For our purposes, the important thing to know about them is that you CANNOT build them in the VBA
editor. They require setting a couple of hidden code attributes that only appear when you export the
code module to a text file.

As you can imagine, manually jumping through those hoops is inefficient and error-prone. The existing
code I wrote in VBA does automate the process, but it requires importing several additional
dependencies. Our VBE add-in will be a direct replacement for the
BuildStronglyTypedCollection() function.

Copy the VBA Code Into twinBASIC

Create a new module named MyModule.twin1.

https://nolongerset.com/strongly-typed-collection-classes-the-easy-way/

Last update: 2024/04/15 19:11 UTC 12114:demo https://grandjean.net/wiki/12114/demo

https://grandjean.net/wiki/ Printed on 2025/06/12 15:29 UTC

Build and Test the Addin on a Different Machine and Bitness

The following instructions assume you are building on a machine with 32-bit Office (mjw20), but installing
on a machine with 64-bit Office (e.g., gbm18):

Ensure "win64" is selected in dropdown1.
File > Build2.
I copied M:\Repos\NLS\DevCon2024\Build\DevCon2024_win64.dll to3.
%fb%\12114\DevCon2024_win64.dll (I will test registering it tomorrow on gbm18)
Open a non-admin cmd prompt4.
Run: regsvr32 DevCon2024_win64.dll5.

Receive message: "DllRegisterServer in DevCon2024_win64.dll succeeded."
Open Word (or Excel) - The add-in appears.6.

Copy and Paste Working VBA Code into twinBASIC

Add a standard code module named "MyModule":1.
Right-click Sources > Add > Add Module (.TWIN supporting Unicode)1.

Go to Strongly-Typed Collections: The Easy Way2.
Copy and paste the GetGuidBasedTempPath code1.
Copy and paste the FileWrite code2.

Handle "Unrecognized datatype symbol 'Scripting'" error in DIAGNOSTICS pane:3.
Go to Project > References1.
Switch to "Available COM References" tab2.
Search for "script" and then click the "Microsoft Scripting Runtime" reference3.
Click [Save Changes]4.

Add fafalone's WinDevLib Package for API Calls

Project > References…1.
Switch to "Available Packages" tab2.
Search for "windows"3.
Check box next to "☑ Windows Development Library for twinBASIC vX.Y.ZZZ"4.

The package will immediately begin downloading in the background
When the download finishes, the name will change to "☑ [IMPORTED] Windows Development
Library for twinBASIC vX.Y.ZZZ"
NOTE: "WinDevLib for Implements" is a different package

Click [Save Changes]5.
Comment out (or delete) API `Declare` lines throughout the project6.

Be aware that if you used non-standard `Alias` names, you may need to adjust your API calls
to match the standard versions used in WinDevLib
myAddIn.twin:

Delete Private Type RECT structure
Delete GetClientRect() function declare

https://nolongerset.com/strongly-typed-collection-classes-the-easy-way/
https://nolongerset.com/strongly-typed-collection-classes-the-easy-way/
https://nolongerset.com/getguidbasedtemppath/
https://nolongerset.com/getguidbasedtemppath/
https://nolongerset.com/text-files-read-write-append/
https://nolongerset.com/text-files-read-write-append/
https://github.com/fafalone/WinDevLib?tab=readme-ov-file#guide-to-switching-from-oleexpimptlb

2025/06/12 15:29 UTC 5/5 Demo Script: DevCon 2024

Grandjean & Braverman, Inc - https://grandjean.net/wiki/

InterProcess.twin:
Delete GetCurrentProcessId() function declare line…
…through Type UUID structure

MyModule.twin:
Delete Sleep sub declare
Comment out CoCreateGuid function declare and highlight the failure to compile due
to the stricter typing of id As UUID in WinDevLib versus id As Any in my code
Uncomment the CoCreateGuid function to show that explicit API declares override
the WinDevLib versions

Pass Unicode strings directly to API declare functions7.
Most string-related API functions have ANSI and Unicode versions ("A" and "W" for "ANSI" and
"Wide", respectively)
Lots of legacy VB6/VBA code use the ANSI version of API functions
WinDevLib encourages the use of Unicode versions by default
This means that code that passes input strings to API functions may require wrapping the
string in `StrPtr()` (or removing `StrPtr()`) from your existing code
☐ Remove StrPtr() from calls to FindWindowEx() in InterProcess.callerApplicationObject
☐ Convert final argument from 0& to vbNullString for calls to FindWindowEx() in
InterProcess.callerApplicationObject

From:
https://grandjean.net/wiki/ - Grandjean & Braverman, Inc

Permanent link:
https://grandjean.net/wiki/12114/demo

Last update: 2024/04/15 19:11 UTC

https://github.com/fafalone/WinDevLib?tab=readme-ov-file#windevlib-api-standards
https://grandjean.net/wiki/
https://grandjean.net/wiki/12114/demo

	Demo Script: DevCon 2024
	Download and Save Sample Code
	Customize the Addin Name and Description
	Create the Tool Window Controls
	Edit the Code in myToolWindow.twin
	Test the Updated Addin
	Strongly-Typed Collection Class
	Copy the VBA Code Into twinBASIC
	Build and Test the Addin on a Different Machine and Bitness
	Copy and Paste Working VBA Code into twinBASIC
	Add fafalone's WinDevLib Package for API Calls

